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Abstract

Magnetic resonance imaging (MRI) is the primary clinical tool to examine inflammatory brain lesions in Multiple
Sclerosis (MS). Disease progression and inflammatory activities are examined by longitudinal image analysis to sup-
port diagnosis and treatment decision. Automated lesion segmentation methods based on deep convolutional neural
networks (CNN) have been proposed, but are not yet applied in the clinical setting. Typical CNNs working on
cross-sectional single time-point data have several limitations: changes to the image characteristics between single
examinations due to scanner and protocol variations have an impact on the segmentation output, while at the same
time the additional temporal correlation using pre-examinations is disregarded.

In this work, we investigate approaches to overcome these limitations. Within a CNN architectural design, we pro-
pose to use convolutional Long Short-Term Memory (C-LSTM) networks to incorporate the temporal dimension. To
reduce scanner- and protocol dependent variations between single MRI exams, we propose a histogram normalization
technique as pre-processing step. The ISBI 2015 challenge data were used for cross-validation.

We demonstrate that the combination of the longitudinal normalization and CNN architecture can increase the
performance and the inter-time-point stability of the lesion segmentation. The proposed longitudinal architecture pro-
duced the highest Dice scores for all the analyzed cases. Furthermore, the combination of the proposed architecture
and normalization led to the lowest variation for the Dice score, denoting a higher consistency of the results. The pro-
posed methods can therefore be used to increase the performance and stability of fully automated lesion segmentation
applications in the clinical routine or in clinical trials.

Keywords: Segmentation, multiple sclerosis, magnetic resonance imaging (MRI), deep learning, convolutional
neural networks, recurrent neural networks, longitudinal normalization

1. Introduction

Multiple sclerosis (MS) is a chronic inflammatory
disease of the central nervous system (CNS) that pro-
duces demyelination and axonal/neuronal damage (Co-
hen and Rae-Grant, 2012). The demyelinating process
is associated with persistent inflammation throughout
the CNS and, as a result, the demyelinated lesion, also
known as plaque, is the main pathological feature of
MS (Arnon and Miller, 2016; Compston et al., 2005).
In terms of location of the lesions, there is a predilec-
tion for the periventricular white matter, optic nerves,
brainstem, cerebellum and spinal cord (Lucchinetti and
Parisi, 2006). Although the etiology of MS remains un-
known, the disease appears to be determined by both

genetic and environmental factors (Pryse-Phillips and
Sloka, 2006). An autoimmune etiology has also been
suggested, but remains unproven (Rinker II et al., 2006).

The course of MS can be described in terms of re-
lapses, remissions and chronic progression either from
onset or after a period of remissions (Compston et al.,
2005). Relapses (attacks) are considered to represent
the clinical correlate of recurrent episodes of inflam-
mation and demyelination, often with axonal injury, in
the CNS. Remissions are probably due to remyelina-
tion and resolution of inflammation and progression is
believed to reflect a combination of ongoing demyeli-
nation, gliosis and axonal loss (Lucchinetti and Parisi,
2006). Four categories are commonly used to classify
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the disease course: Relapsing-remitting, secondary pro-
gressive, primary progressive and progressive-relapsing
(Compston et al., 2005). Relapsing-remitting MS is
characterized by recurrent CNS inflammation with sta-
ble clinical manifestations between episodes, whereas
in secondary progressive MS there is a gradual neu-
rological deterioration, which occurs with or without
superimposed relapses. Both primary progressive and
progressive-relapsing MS exhibit gradual neurological
deterioration from onset as main feature, but in the case
of progressive-relapsing there are also superimposed re-
lapses (Cohen and Rae-Grant, 2012).

According to the MS Atlas, which is a study carried
out in 2008 and updated in 2013 by the World Health
Organization (WHO) and the MS International Feder-
ation (MSIF), there were about 2.1 million people in
the world with the disease in 2008 and 2.3 million in
2013. A more recent study reports about 2.2 million
people with MS in the world and 18.932 deaths due
to MS in 2016 (Wallin et al., 2019). The study also
reports greater age-standardized prevalence in North
America and some northern European countries (more
than 120 cases per 100.000 population), moderate in
some countries of Europe and Australasia (60-120 cases
per 100.000 population) and lowest in North Africa
and the Middle East, Latin America, Asia, Oceania,
the Caribbean, and sub-Saharan Africa (<60 cases per
100.000 population).

Besides the uneven geographical distribution, MS has
particular incidence and prevalence depending on sex
and age. There is a female predominance of approx-
imately 2.5 to 1 (Cohen and Rae-Grant, 2012). Re-
garding the onset age, although the disease can occur
at virtually any age, the incidence of MS is low in child-
hood, with onset younger than age 10 occurring in about
0.3% of cases. After the age of 18 the incidence in-
creases, reaching a peak between 25 and 35 and then
declining. For this reason, MS is the most common non-
traumatic neurological disease in young adults. Onset of
the disease after the age of 50 is considered rare (Biren-
baum and Greenspan, 2016; Lladó et al., 2012; Miller,
2006). The prevalence of MS is similar for boys and
girls among preteen children. Divergence appears dur-
ing adolescence, with higher prevalence among girls as
compared to boys. This pattern continues until around
the end of the sixth decade of life, when the sex ratio is
about 2 to 1 in favor of women. For older people preva-
lence shows a continued increase for women, while for
men there is a slow attenuation (Wallin et al., 2019).

Diagnosis of MS can involve several techniques or
approaches that include physical examination, Magnetic
Resonance Imaging (MRI), cerebrospinal fluid (CSF)
analysis and evoked potentials (Cohen and Rae-Grant,
2012). MRI is widely used for diagnosis and moni-
toring of MS, due to the high sensitivity that it has for
depicting white matter lesions, particularly in terms of
dissemination in time and space, which is an impor-

tant diagnostic criteria (Salem et al., 2019). Depending
on the modality or sequence being examined, lesions
may appear as hyperintensities, like in the case of T2-
weighted (T2w), Proton Density weighted (PDw) and
Fluid Attenuated Inversion Recovery (FLAIR), or as hy-
pointensities, like in the case of T1-weighted (T1w) im-
ages (Brosch et al., 2016b). Imaging biomarkers such
as lesion load and lesion count, which are based on de-
lineation of lesions, are important for determining the
progression and treatment effects of MS (Brosch et al.,
2016a). Although feasible in practice and considered
as the gold standard, manual lesion segmentation from
3D scans is tedious, time-consuming and prone to errors
caused by inter- and intra-rater variability (Andermatt
et al., 2018; Roy et al., 2018; Valverde et al., 2017). For
this reason, automated strategies have been proposed
based on traditional machine learning and atlas based
techniques (Lladó et al., 2012). More recently, deep
neural networks have attracted interest, specially con-
volutional neural networks (CNN) by proving their ef-
fectiveness in tissue segmentation and also brain tumor
segmentation (Salem et al., 2019).

From the perspective of how the data is used to train a
model, MS lesion segmentation algorithms can be clas-
sified as either longitudinal of cross-sectional. Lon-
gitudinal approaches make use of the temporal infor-
mation provided by subsequent scans (known as time-
points or visits) of the same patient. In cross-sectional
approaches, all scans, even if belonging to the same pa-
tient, are treated as independent scans and no time infor-
mation is considered. Most of the automated methods
for MS lesion segmentation found in the literature treat
the data as cross-sectional even in the cases in which the
images have been acquired in a longitudinal manner.

This master thesis focused on the impact of longitu-
dinal approaches from two perspectives: (1) architec-
ture and (2) data normalization. Both perspectives aim
to exploit the temporal information of longitudinal data
to produce more consistent segmentation of the MS le-
sions.

This document is organized as follows. Section 2
presents different normalization methods that have been
proposed or adopted for longitudinal MRI in presence
of MS lesions. It also presents the state of the art as
a comparison between cross-sectional and longitudinal
approaches, focusing on deep learning approaches. In
Section 3 the methodology and materials are described
in detail. The results and their corresponding analysis
are presented in Sections 4 and 5, respectively. Finally,
conclusions are provided in Section 6.

2. State of the art

2.1. Longitudinal Normalization

One important issue when using longitudinal data
is the normalization across time-points, or longitudinal
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normalization. The goal is to increase the similarity, in
terms of image intensity regarding tissue classes, of the
different time-points, without modifying the structures
whose changes are due to pathological conditions. MS
lesions are an example of those structures, as they can
persist, change or disappear in time (Roy et al., 2013).
A statistical normalization method is proposed by Shi-
nohara et al. (2014), in which all histograms are cen-
tered using statistical measures obtained from the white
matter voxels. Sweeney et al. (2013) followed a very
similar approach by expressing intensities as a depar-
ture from the white matter mean. Other methods based
on matching of histograms use landmarks from a ref-
erence template to increase similarity through a piece-
wise linear transformation (Nyúl et al., 2000). This type
of approaches can cause, however, undesired mappings,
altering key anatomical structures (Roy et al., 2013).

Another longitudinal normalization method was in-
troduced by Roy et al. (2013). In this case voxel changes
in time are modeled mathematically depending on the
behaviour and the lesion priors are used for keeping the
lesion voxels unchanged.

2.2. MS Lesion Segmentation

Automated MS lesion segmentation is not a trivial
task due to the fact that lesions vary in size, shape,
intensity and location within the brain (Brosch et al.,
2016a). A wide variety of algorithms have been pro-
posed in the past to address this problem. We can distin-
guish between traditional machine learning approaches
and deep-learning-based approaches. In the traditional
machine learning group, algorithms based on both su-
pervised and unsupervised learning can be found. The
supervised learning subgroup includes algorithms based
on probabilistic atlases and algorithms that are trained
with manual segmentation masks. In the unsupervised
learning subgroup, methods can either focus on seg-
menting brain tissue and detecting lesions as outliers, or
they can directly focus on segmenting the lesions (Lladó
et al., 2012).

With some recent exceptions such as the one pro-
posed by Wang et al. (2020), in which a Bayesian
model is built using Markov and Gibbs random field
theorems, the vast majority of modern approaches are
based on deep learning, to the point that deep learning
approaches outnumber the approaches based on tradi-
tional machine learning. More specifically, deep convo-
lutional neural networks (CNN) eliminate the need for
handcrafted features or prior guidance and have shown,
as mentioned before, outstanding performance in differ-
ent brain imaging tasks. Furthermore, CNN-based ap-
proaches are now in the top of the rankings of interna-
tional MS lesion segmentation challenges (Salem et al.,
2019).

2.2.1. Cross-sectional MS lesion segmentation

Most of the deep learning approaches for MS lesion
segmentation are cross-sectional, as shown in Fig. 1.
Leading the entry of deep learning into the MS lesion
segmentation field, Yoo et al. (2014) used a patch-based
deep neural network to extract features that could then
be used by a random forests classifier. Shortly there-
after, Vaidya et al. (2015) and Ghafoorian and Bram
(2015) used 2D and 3D patch-based CNNs, respec-
tively, not only for extracting features, but also for per-
forming voxel classification using fully connected lay-
ers. Brosch et al. (2015) proposed an encoder-decoder
called Convolutional Encoder Network (CEN) architec-
ture without skip connections that used whole slices in-
stead of patches. In an attempt to combine the advan-
tages of the CEN with the classic U-Net (Ronneberger
et al., 2015) architecture, the same authors added skip
connections to the CEN model and used deconvolution
instead of upsampling (Brosch et al., 2016a). Follow-
ing the encoder-decoder architectures, McKinley et al.
(2016) proposed to use several networks, one for each
orientation (axial, sagittal and coronal) with only one
skip connection at the top level. This multi-view style
was also exploited by Aslani et al. (2018) using skip
connections for all levels, and then by Aslani et al.
(2019), who used three parallel independent encoders
based on residual blocks, to generate features from three
different modalities. These features were then com-
bined and upsampled with one single decoder. The ten-
dency towards the encoder-decoder architectures can be
observed in several other approaches (Brugnara et al.,
2020; Duong et al., 2019; Gabr et al., 2019; Narayana
et al., 2020). As an alternative to this encoder-decoder
architectures, a method based on convolutional recur-
rent neural networks was proposed by Andermatt et al.
(2018), but the sequential power of the recurrent net-
works was not used for considering the time dimension,
but rather for treating the spatial dimensions as sequen-
tial data. Their method is based on multi-dimensional
gated recurrent units (GRU) and considers a filtered ver-
sion of the images as an additional channel, under the
assumption that the filtered images announce changes
before they actually occur.

One of the problems faced when segmenting MS le-
sions is the number of false positive lesions that can
be generated by an automated algorithm, due to the
high class imbalance (Salehi et al., 2017). To address
this problem, Valverde et al. (2017) proposed a special
type of CNN architecture. It is a cascaded 3D CNN
in which a first network is trained to have high sensi-
tivity so that candidate lesions can be detected, and a
second network is trained to reduce the amount of false
positives (FP). One advantage of this architecture is that
it allows domain adaptation, meaning that after being
trained on a certain dataset, it does not have to be com-
pletely re-trained for evaluation on another dataset. Fur-
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Figure 1: Overview of deep learning methods for MS lesion segmen-
tation according to categories cross-sectional and longitudinal. For
years 2014 to 2019 publications with at least 3 citations are consid-
ered, whereas for 2020 all found publications are included.

thermore, only some of the fully connected layers have
to be re-trained with few new examples (Valverde et al.,
2019). Instead of focusing on the architecture itself,
Salehi et al. (2017) and Hashemi et al. (2019) used an
asymmetric loss function based on the Tversky index.
This loss function, which is a generalization of the Dice
coefficient and the Fβ scores, allows to give more im-
portance to sensitivity or to precision, as determined by
two parameters α and β.

Although supervised learning is the predominant type
of learning for MS lesion segmentation, other types
of learning such as unsupervised (Atlason et al., 2019;
Baur et al., 2019b), semi-supervised (Baur et al., 2019a)
and self-supervised (Fenneteau et al., 2020) have been
explored too.

2.2.2. Longitudinal MS Lesion Segmentation
Only few deep learning approaches can be found in

the literature that tackle the problem of MS lesion seg-
mentation in a longitudinal manner. The first CNN-
based longitudinal method found in the literature was
pro-posed by Birenbaum and Greenspan (2016, 2017).
Although their CNN is used only for classifying can-
didates extracted using intensity and atlas information,
the method employs different time-points to perform the
task.

McKinley et al. (2020) proposed a method to detect
the lesion load change using CNNs. To achieve this,
an architecture known as DeepSCAN was used as basis,
which is a hybrid between the U-Net and the Dense-Net
(Huang et al., 2017). A special type of loss function al-
lows to output, for each voxel and tissue class, the prob-
ability that a voxel contains the tissue class, as well as
the probability that the predicted label does not match
the label of the ground truth. These probabilities and
the mask provided by the model are then used to obtain
information about lesion change. Following this idea of
detecting changes, Salem et al. (2020) proposed an ar-
chitecture that consists of a first block based on Voxel-
morph (Balakrishnan et al., 2019) to learn deformation
fields and register baseline image to the follow-up im-
ages, and a second block to perform the segmentation

of new lesions using the results of the first block.

3. Materials and methods

3.1. Dataset and Pre-processing

One of the most popular datasets for MS lesion seg-
mentation is the one provided by the longitudinal MS
lesion segmentation challenge, which was part of the In-
ternational Symposium on Biomedical Imaging (ISBI)
in 2015 and continues to be publicly available. The
dataset, acquired with a 3T scanner, is subdivided into
training (5 subjects) and testing (14 subjects) sets. Only
the training set contains lesion segmentation masks gen-
erated by two different expert raters. These masks will
be referred to as mask1 and mask2 in this document.
Each subject contains between 4 and 6 time-points, each
of which consists of a T1-weighted (T1-w) magnetiza-
tion prepared rapid gradient echo (MPRAGE) with TR
= 10.3 ms, TE = 6 ms, flip angle = 8◦, 0.82 × 0.82 ×
1.17 mm3 voxel size; a double spin echo (DSE) which
produces the PD-w and T2-w images with TR = 4177
ms, TE1 = 12.31 ms, TE2 = 80 ms, 0.82 × 0.82 × 2.2
mm3 voxel size; and Fluid Attenuated Inversion Recov-
ery (FLAIR) with TI = 835 ms, TE = 68 ms, 0.82 ×
0.82 × 2.2 mm3 voxel size. The average time between
subsequent time-points is 1 year (Carass et al., 2017;
IACL, 2018).

Both the original and the pre-processed images are
available for use. The pre-processing steps for each
subject are the following: First, the baseline (first time-
point) MPRAGE image is corrected using the N4 algo-
rithm, then it is skull-stripped, then dura stripped. After
this a second N4 correction takes place and, finally, it
is registered to a 1 mm isotropic MNI template. This
pre-processed baseline MPRAGE image is then used as
target for remaining images of the current patient, which
are N4 corrected and then rigidly registered to the base-
line MPRAGE image. The masks obtained from skull
and dura stripping the baseline image are used on the
remaining images (IACL, 2018). For this work, the pre-
processed images were used.

3.2. Longitudinal Normalization

A simple yet effective MRI longitudinal normaliza-
tion based on the Chi-Square metric χ2 is proposed.
The Chi-Square test is commonly used for analyzing the
difference between observed and expected distributions
(Weaver et al., 2017), but in this case only the metric is
used to measure and maximize the similarity between
the histograms of volumes of the same modality for dif-
ferent patients and different time-points. Eq. 1 shows
the Chi-Square metric as a means of comparison of two
histograms Ha and Hb, for voxel intensities I.

Let s, t and m represent subject, time-point and
modality, respectively. For each modality m a reference
volume V (m)

ŝt̂ is selected to normalize the other volumes
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V (m)
st of that modality, with s , ŝ, t , t̂. For each V (m)

st an
optimal scalar θ(m)

st is found using Eq. 2, where H(m)
ŝt̂ and

H(m)
st are the histograms of the normal appearing white

matter (NAWM) of V (m)
ŝt̂ and V (m)

st , respectively. The nor-
malized images are the result of the product θ(m)

st V (m)
st . To

obtain the NAWM masks, the Computational Anatomy
Toolbox (CAT12) applied within the Statistical Para-
metric Mapping (SPM12) toolkit was used (Gaser, C.,
Dahnke, 2016; Penny et al., 2011).

distχ2 (Ha,Hb) =
∑

I

[Ha(I) − Hb(I)]2

Ha(I)
(1)

θ(m)
st = argmin

θ

∑

I

[H(m)
ŝt̂ (I) − H(m)

st (θ · I)]2

H(m)
ŝt̂ (I)

(2)

3.3. Patch sampling
Training a patch-based model that considers multi-

ple time-points and multiple MRI modalities requires a
proper temporal sampling strategy. In this work, patches
with dimensions (T , M, H, W, D) are used, where T
and M represent the number of selected time-points to
process for each sample and the number of modalities,
respectively. H, W and D represent the spatial dimen-
sions, i.e. the height, width and depth of the patches in
each volume.

We can subdivide the sampling process into spatial
sampling, modality sampling and time sampling. Spa-
tial sampling determines how the 3D patches are se-
lected within each 3D volume. Sub-patches with size
(H, W, D) are extracted for each subject in an uniform
way from the brain only, using a brain mask generated
as the non-zero voxels of the FLAIR image of the first
time-point. Because of the multi-modal and longitudi-
nal character, the selected sub-patches are also extracted
across modalities and across time-points, as determined
by the modality and time sampling.

Modality sampling refers to which modalities are
used for generating the patches. Regarding modal-
ity sampling, considering all four modalities has been
shown to bring the best performances in MS lesion seg-
mentation as compared to using only some of them
(Narayana et al., 2020). For this reason, all four avail-
able modalities are used, therefore M = 4 in all cases.

Finally, sampling in time refers to how the patches
are selected across time-points, as determined by the
desired number of time-points to be analyzed in each
sample (parameter T ). This sampling is made by slic-
ing a window of size T through all available time-
points. Choosing an odd value for T becomes con-
venient, so that the segmentation can be provided for
the time-point in the middle, which is possible thanks
to the bi-directional implementation of the C-LSTMs,
as explained later on. This, however, raises the ques-
tion about how to segment the bT/2c first and last time-
points. This was solved by applying time padding, i.e.

by repeating the first and last bT/2c time-points. Fig. 2
shows this strategy for the case when T = 3. The first
and last time-points are copied for all modalities, which
is indicated with blue arrows in the figure. It is also
shown which time-point is selected in the ground truth,
which, as mentioned before, is chosen to be the one in
the middle of the window. Thus, this padding allows
to generate samples in the positions where the sliding
window would not have information available.

Figure 2: Time padding strategy when T = 3. First and last time-
points are repeated for all modalities (blue arrows). The red arrow
indicates how the temporal sliding window moves.

3.4. Architecture

In order to exploit temporal information, a 3D ex-
tension of the architecture presented by Novikov et al.
(2019) is proposed for the segmentation of MS lesions
from longitudinal multi-modal brain images. This ar-
chitecture is a hybrid between the well known U-Net
and a variant of the Convolutional Long Short-Term
Memory (C-LSTM) network (Xingjian et al., 2015).
Figure 4 shows the architecture. Just like in the U-
Net, there is an encoder for extracting hierarchical fea-
tures, but these are extracted for each time-point sepa-
rately. These features are then combined, at the deep-
est level and for all input time-points, by a bidirectional
C-LSTM. After the features are processed by the first
C-LSTM, a decoder upsamples them so that the input
dimensions can be reached again. At the output of the
decoder, a second bidirectional C-LSTM combines the
features of the different time-points again. Finally, the
feature maps corresponding to a specific time-point (e.g.
the one in the middle, if T is odd) are selected and a last
convolution takes place to reduce the number of maps
to 2, one for each class, lesion or non-lesion. The selec-
tion of a time-point after the second C-LSTM implies
that when training the network, the ground truth mask
of the same time-point must be used, as indicated previ-
ously in Fig. 2.
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The inner structure of the units or cells that compose
each bidirectional C-LSTM block is shown in Fig. 3,
where C and h correspond to the cell and hidden states,
respectively. Contrary to traditional LSTM networks
used in other fields and although not visible in the fig-
ure, the C-LSTM uses convolutions (Xingjian et al.,
2015), as determined by Eq. 3 to 8, where σ corre-
sponds to the sigmoid function, tanh is the hyperbolic
tangent function, ∗ denotes convolution and ◦ represents
the Hadamard product.

Figure 5 shows how the C-LSTM blocks are built
for the case when T = 3. The bidirectional nature is
achieved by processing the sequences in both possible
directions of the time dimension and then adding the
outputs. This allows to better capture the temporal be-
haviour of the lesions and also makes possible to take
advantage of using the time-point in the middle during
training.

x

x +
c

h

h

c

h

t-1

t-1

t

t

t

xt

x +

sigmoid tanh Hadamard concatenationpointwise
addition

x x

product

i tf t ot

Ct

Figure 3: C-LSTM basic unit. Convolutions described by Eq. 3 to 8
are not shown in the figure. Diagram based on Phi (2018).

it = σ(Wi ∗ [ht−1, xt] + bi) (3)

ft = σ(W f ∗ [ht−1, xt] + b f ) (4)

ot = σ(Wo ∗ [ht−1, xt] + bo) (5)

C̃t = tanh(WC ∗ [ht−1, xt] + bC) (6)

Ct = ft ◦Ct−1 + it ◦ C̃t (7)

ht = ot ◦ tanh(Ct) (8)

3.5. Post-Processing

After a segmentation is produced, a post-processing
step is performed to exclude potential false-positive
(FP) detected lesions. This is achieved by imposing
a minimal lesion size of 3 mm3, as it has been found
to improve the performance of MS lesion segmentation
methods (Fartaria et al., 2018).

3.6. Experimental Setup

3.6.1. Normalization Configuration
One important step in the proposed longitudinal nor-

malization is the white matter segmentation, which was
performed on each volume using CAT12 with the de-
fault parameters. For finding the values of θ(m)

st , the
first time-point of subject 01 was selected as reference
for each modality. The Nelder–Mead Simplex method
(Dennis Jr and Woods, 1985) was employed for the min-
imization of the distance function.

For comparison purposes, the min-max normalization
(Eq. 9) and the standardization (Eq. 10) are also consid-
ered, since they are widely used in MS lesion segmen-
tation. In min-max normalization the intensity values
are mapped to the interval [0, 1], whereas in standard-
ization the goal is to have zero mean and standard de-
viation one. In Eq. 9, Iorig, Imin and Imax represent the
original, minimum and maximum intensities of a vol-
ume, respectively, and Inorm is the assigned intensity. In
Eq. 10 the term µ corresponds to the mean of the in-
tensities and σ is the standard deviation. Iorig and Inorm

have the same meaning explained for Eq. 9.

Inorm =
Iorig − Imin

Imax − Imin
(9)

Inorm =
Iorig − µ

σ
(10)

3.7. Training and Cross-validation

After having normalized the pre-processed images, a
leave-one-out (subject-wise) cross-validation was per-
formed on the training set. For each fold, from the
4 subjects not used for testing, one was used for vali-
dation and 3 for training. The model was trained us-
ing 32×32×32 spatial patches with step size 16×16×16.
All four modalities were used (M = 4) and three
time-points were considered for each training sample
(T = 3). This means the size of each sample patch
is (3,4,32,32,32). Training was performed using the
Adam optimizer (Kingma and Ba, 2015) for a maxi-
mum of 200 epochs with an early stopping condition of
20 epochs, and a batch size of 16. To reduce the effect
of the class imbalance (more normal tissue as compared
to lesion tissue), the dice loss function (Milletari et al.,
2016) was used, as defined in Eq. 11, where pi and
gi denote the predicted binary segmentation and ground
truth binary volume, respectively, and N is the total
number of voxels. All models were separately trained
for both available masks, and the subjects were assigned
for each subject according to Table 1, where the valida-
tion subjects were randomly chosen once and then set to
be the same for all experiments. No data augmentation
was performed in order to increase the comparability
between different experiments.
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Figure 4: U-Net ConvLSTM architecture. Patch dimensions are included in gray text, where T and M denote the number of selected time-points
and number of modalities, respectively. H, W and D denote the spatial dimensions of the patches in the volumes. Horizontal dashed lines denote
skip connections by copying and concatenation.
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Figure 5: Bidirectional C-LSTM block for the case when T = 3. Both the cell and hidden states C0 and h0 are initialized to zero for the first unit.
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2

N∑
i
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N∑
i

p2
i +

N∑
i

g2
i

(11)

Table 1: Cross-validation subject selection

Fold Train Validation Test
1 02, 04, 05 03 01
2 01, 04, 05 03 02
3 01, 02, 05 04 03
4 01, 02, 03 05 04
5 01, 03, 04 02 05

A cross-sectional version of the model, was also
trained under the same parameters described before.
This cross-sectional model, which is shown in Fig. 6, is
the version resulting from the proposed model when the
C-LSTM blocks are removed and the time-dimension is
not included in the samples.

Both models (U-Net and U-Net ConvLSTM) were
trained using cross-validation for the three described
normalization methods (min-max, standardization and
the proposed one), and for both available segmentation
masks (mask1 and mask2). This means a total of 12 ex-
periments were carried out to determine the advantages
of the proposed normalization method as well as the ad-
vantages of incorporating time information to the U-Net
with the bi-directional C-LSTM blocks.
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Input 
patches Output 

Double 3x3x3 Conv + ReLU

MaxPool3D, double 3x3x3 Conv + ReLU

Single 1x1x1 Conv

Single 2x2x2 UpConv, concatenate, 
Double 3x3x3 Conv + ReLU

[M, H, W, D]
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       128, H, W, D
4 4 4

        256, H, W, D
16 16 16
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[32, H, W, D]

[2, H, W, D]        32, H, W, D
2 2 2

        64, H, W, D
2 2 2

Figure 6: U-Net architecture. Patch dimensions are included in gray text, where M denotes number of modalities, respectively. H, W and D denote
the spatial dimensions of the patches in the volumes. Dashed lines denote skip connections implemented by copying and concatenation.

3.8. Evaluation Metrics
To evaluate the performance of the longitudinal

method, the Dice score (DSC), lesion-wise false pos-
itive rate (LFPR) and lesion-wise true positive rate
(LTPR) were used. The DSC is computed according to
Eq. 12, where TP, FP and FN denote number of true
positive, false positive, and false negative voxels, re-
spectively. The LFPR (Eq. 13) is the number of lesions
in the produced segmentation that do not overlap with
a lesion in the ground truth, divided by the total num-
ber of lesions in the produced segmentation. The LTPR
(Eq. 14) is computed as the number of lesions in the
ground truth that overlap with a lesion in the produced
segmentation, divided by the total number of lesions in
the ground truth (Aslani et al., 2018).

DS C =
2 × T P

2 × T P + FP + FN
(12)

LFPR =
LFP
#PL

(13)

LT PR =
LT P
#RL

(14)

3.9. Implementation
The models were implemented in PyTorch, using a

GPU NVIDIA Tesla T4.

4. Results

The histograms after normalization are presented in
Fig. 7 for all pre-processed training subjects of the
dataset. Background voxels are ignored for the com-
putation of the histograms.

Tables 2 to 5 show the results of the cross-validation
process for all four possible combinations: training and
evaluation with mask1 (Table 2), training with mask1
and evaluation with mask2 (Table 3), training with mask
2 and evaluation with mask1 (Table 4), and training and
evaluation with mask2 (Table 5). The metrics are com-
puted as global averages for all time-points of all sub-
jects and standard deviations are shown in parentheses.

When the same ground truth is used for both training
and evaluation (Tables 2 and 5), the proposed pipeline
produces the best DSC (0.711) in the case of mask1 and
the second best (0.676) in the case of mask2, compared
to the other evaluated methods. In both situations, how-
ever, the proposed pipeline leads to the lowest standard
deviation of the DSC. When different masks are used
for training and evaluation (Tables 3 and 4), the pro-
posed pipeline leads to the highest DSC and also the
lowest standard deviations. The best results could be
achieved when training and evaluating the network on
mask1, as well as when training on mask2 and evaluat-
ing on mask1 (Tables 2 and 4), with a DSC of > 0.71
and standard deviation of 6 0.085.

To demonstrate how the standard deviation changes
for the different evaluated methods, Fig. 8 and 9 show
scatter plots of the DSC metric for the cases in which
both training and evaluation are performed using the
same ground truth. Particularly, with respect to the
simple cross-sectional model with min-max normaliza-
tion (leftmost), the proposed pipeline (rightmost) re-
duces the standard deviation of the DSC by 56.2% and
33.8% for mask1 and mask2, respectively. Especially,
the amount of results with low DSC is reduced.

Resulting lesion segmentation examples are shown as
overlay on the FLAIR images in Fig. 10 and 11 for one
slice of specific subjects.

5. Discussion

5.1. Longitudinal Normalization

A longitudinal pipeline for the segmentation of MS
lesions has been presented in this document. The first
step in the pipeline is the longitudinal normalization,
which is based on the optimization of the Chi-Square
metric, and which is performed not only across time-
points for every single subject, but also across all sub-
jects. This allows to increase the homogeneity of the
whole dataset while preserving the contrast character-
istics of the lesions and other structures. As shown in
Fig 7, the alignment of the histograms is higher for the
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Figure 7: Histograms of the training set images for all four modalities after min-max normalization (top row), after standardization (middle row)
and after the Chi-Square based normalization (bottom row).

Table 2: Segmentation results for different models and normalization methods. For the cross-validation mask1 was used for both training and
evaluation. Metrics are computed as the averages for all time-points of all subjects.

Method Normalization Mean DSC Mean LFPR Mean LTPR

U-Net
min-max 0.636 (0.194) 0.396 (0.143) 0.616 (0.189)

standardization 0.685 (0.159) 0.348 (0.163) 0.662 (0.199)
proposed 0.651 (0.148) 0.453 (0.240) 0.664 (0.198)

Proposed
min-max 0.646 (0.179) 0.407 (0.170) 0.645 (0.160)

standardization 0.684 (0.143) 0.371 (0.178) 0.656 (0.174)
proposed 0.711 (0.085) 0.398 (0.134) 0.667 (0.171)

Table 3: Segmentation results for different models and normalization methods. For the cross-validation mask1 was used for training and mask2 for
evaluation. Metrics are computed as the averages for all time-points of all subjects.

Architecture Normalization Mean DSC Mean LFPR Mean LTPR

U-Net
min-max 0.608 (0.185) 0.360 (0.165) 0.445 (0.182)

standardization 0.635 (0.165) 0.338 (0.190) 0.455 (0.149)
proposed 0.605 (0.148) 0.411 (0.265) 0.485 (0.158)

Proposed
min-max 0.605 (0.169) 0.392 (0.176) 0.458 (0.143)

standardization 0.625 (0.144) 0.355 (0.193) 0.465 (0.144)
proposed 0.658 (0.085) 0.377 (0.189) 0.479 (0.139)

proposed method in comparison to the classic standard-
ization, in which the overall alignment is not always
achieved.

In comparison to other normalization methods that
require a reference such as histogram matching, the pro-
posed method allows to preserve the basic shape of the
histograms, which prevents from loosing key intensity

information about the lesions. The optimization of the
similarity metric reduces problems that peak/landmark
based methods can exhibit when the histograms differ
too much before normalization, especially in MPRAGE
and PD images, where several peaks can be observed
in the histograms. We chose an approach using a pre-
segmented WM mask, assuming that normalizing the
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Table 4: Segmentation results for different models and normalization methods. For the cross-validation mask2 was used for training and mask1 for
evaluation. Metrics are computed as the averages for all time-points of all subjects.

Architecture Normalization Mean DSC Mean LFPR Mean LTPR

U-Net
min-max 0.670 (0.129) 0.420 (0.187) 0.678 (0.162)

standardization 0.695 (0.167) 0.441 (0.161) 0.740 (0.135)
proposed 0.659 (0.129) 0.544 (0.118) 0.750 (0.138)

Proposed
min-max 0.680 (0.124) 0.406 (0.179) 0.694 (0.130)

standardization 0.712 (0.127) 0.446 (0.111) 0.750 (0.136)
proposed 0.713 (0.080) 0.455 (0.134) 0.720 (0.118)

Table 5: Segmentation results for different models and normalization methods. For the cross-validation mask2 was used for both training and
evaluation. Metrics are computed as the averages for all time-points of all subjects.

Architecture Normalization Mean DSC Mean LFPR Mean LTPR

U-Net
min-max 0.664 (0.142) 0.359 (0.180) 0.505 (0.145)

standardization 0.663 (0171) 0.375 (0.139) 0.561 (0.089)
proposed 0.638 (0.135) 0.481 (0.163) 0.580 (0.122)

Proposed
min-max 0.673 (0.137) 0.329 (0.156) 0.542 (0.135)

standardization 0.685 (0.140) 0.385 (0.116) 0.550 (0.108)
proposed 0.676 (0.094) 0.392 (0.191) 0.534 (0.099)

Figure 8: Scatter plot of DSC metric for models trained and evaluated
with mask1 using cross-validation, for different normalization meth-
ods. Blue circles represent the value of the metric for all subjects and
time-points, and green circles represent the average value.

surrounding tissue value of white matter lesions opti-
mally supports the detection of the pathological lesions.
This approach relies on a rough segmentation of the
white matter before applying the CNN. The WM seg-
mentation can be affected by the presence of lesions, but
the influence in the final displacement of the histograms
was found to be very small. However, when a WM mask
is not available, the normalization can also be applied on
the original histograms, at the cost of a higher influence
of the lesion volume in the quality of the normalization,
but still allowing the alignment of the histograms.

One disadvantage of the proposed normalization is

Figure 9: Scatter plot of DSC metric for models trained and evaluated
with mask2 using cross-validation, for different normalization meth-
ods. Blue circles represent the value of the metric for all subjects and
time-points, and green circles represent the average value.

the fact that it requires a reference time-point, which is
used for all remaining images. Even though the effect
of the selection of this reference or the generation of a
synthetic reference was not studied in this work, it is
expected to have an impact in the performance of the
subsequent steps of the pipeline.

5.2. Lesion Segmentation
The second step in the pipeline is the lesion segmen-

tation, for which an improvement in the DSC is ob-
served when the mask1 is used for both training and
evaluation, whereas for training and evaluation per-
formed with mask2 the standardization produced, to-
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gether with the proposed architecture, a better DSC as
compared to the other cases. When training and eval-
uation is performed with different masks, the proposed
pipeline produced the highest DSC. Furthermore, in all
4 possible combination of masks for training an evalua-
tion the proposed architecture produced the best results
in terms of DSC, either with standardization or with
the proposed normalization procedure. This contributes
to the validness of the initial hypothesis that consider-
ing time information can help produce better segmenta-
tion results, as suggested previously by Birenbaum and
Greenspan (2016, 2017).

Table 6 shows a summary and comparison of the re-
sults, with respect to previous reported deep learning
approaches in the literature for the same general cross-
validation procedure followed in this work. The ta-
ble also includes the metrics computed between both
raters. Taking into account that no data augmentation
took place for the proposed pipeline, the obtained re-
sults are close and even higher to some of the previ-
ously proposed methods in some of the metrics, partic-
ularly the DSC and the LFPR. However, the table does
not reflect the inter- and intra time-point consistency of
the results, which is also one important advantage of the
proposed pipeline.

In order to characterize MS lesion activity and the
temporal change of lesion size correctly, it is crucial that
all time-points lead to consistent results compared to a
human expert rater. To study this, tables 2 to 5 include
the standard deviation of the obtained DSC for the re-
spective method. Outliers lead to higher standard de-
viations, while results consistent with the human rater
should yield low standard deviations of DSC. Thus, the
standard deviation of DSC is an important quality met-
ric in this work, to characterize the quality for a segmen-
tation when longitudinal data is used.

Another important fact to be considered in the longi-
tudinal setting is that, for a given subject, the images of
subsequent time-points are not expected to have signif-
icant or aggressive changes. Instead, they are expected
to be relatively similar considering also that the aver-
age interval between time-points for the used dataset is
one year. This consistency in the volumes implies con-
sistency in the segmentations of the lesions. While the
proposed histogram normalization method is expected
to reduce outliers induced by time-points with different
image contrast, the proposed longitudinal architecture
including C-LSTM is expected to improve the temporal
consistency of the segmentations.

The cross-sectional approach with min-max normal-
ization can produce segmentations that are highly dif-
ferent for a certain time-point of a subject, as shown in
the first column of Fig. 10, where no lesion is detected
in the second time-point for the shown slice. This is
corrected by implementing a better normalization strat-
egy. However, in order to increase the intra and inter
time-point consistency, the use of a longitudinal model

together with the proposed normalization led to the most
compact ranges for the DSC metric in terms of low stan-
dard deviation, as shown in the scatter plots and stan-
dard deviations. This does not mean that the model can
only detect lesions that appear in all time-points. Fig.
11 shows an example of a lesion that changes in time,
and for which the proposed architecture, when com-
bined with the proposed normalization or with standard-
ization, is able to capture the change in the lesion.

Regarding the LFPR and LTPR, it does not seem to
be an improvement nor deterioration of the obtained val-
ues, or at least a general trend. In some cases the lon-
gitudinal model led to higher values, whereas in some
other cases the cross-sectional approach caused higher
values for both LFPR and LTPR.

In terms of training and inference times, although
this aspect was not analyzed thoroughly, the addition
of the bidirectional C-LSTM blocks causes additional
computation time which is highly dependent on the im-
plementation of these blocks. The training time of the
proposed architecture was found to be about 1.5x the
time of a normal cross-sectional U-Net. This factor is
of course dependent on the implementation of the C-
LSTM blocks, which were not optimized for time effi-
ciency in this work.

Diagnosis and treatment decision based on lesion in-
spection on MRI data is a central aspect in MS. The
clinical workflow also contains the comparison to pre-
examinations to assess inflammatory activity. This pro-
cess is tedious when looking at up to above 100 slices
in high resolution imaging, at least four modalities and
several pre-examinations. Still, common solutions for
automated lesion segmentation do not rely on neural
networks and are not typically applied in the clinical
setting. Thus, the work presented in this thesis is highly
relevant as it investigates ways to improve the state-of-
the-art regarding the important aspect of longitudinal
analysis, in order to make longitudinal lesion segmen-
tation applicable in clinical MS neuroimaging.

6. Conclusions and Future Work

In this study we have proposed a supervised lon-
gitudinal pipeline for MS lesion segmentation from
multi-modal MR images. The approach combines a
whole-volume longitudinal normalization scheme with
a patch-based 3D CNN architecture that exploits time
information. The method was evaluated on data from
the ISBI 2015 challenge, obtaining result that are con-
sistent in time as well as across subjects, allowing also
improvements in the segmentation metrics, especially
in the DSC. Lesion segmentation consistency in time
for each subject should be an important goal of the seg-
mentation algorithms, as it is a natural consequence of
the non-sudden variations in the different scans that a
subject can have in longitudinal studies.
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Table 6: Comparison of different deep learning segmentation methods for leave-one-out cross-validation on the ISBI challenge dataset. The word
proposed represents in this case the whole pipeline i.e. the proposed normalization followed by the proposed model.

Method mask1 mask2
DSC LFPR LTPR DSC LFPR LTPR

Rater 1 - - - 0.732 0.174 0.645
Rater 2 0.732 0.355 0.8260 - - -

Brosch et al., 2016 (mask1) 0.684 0.546 0.746 0.644 0.529 0.633
Brosch et al., 2016 (mask2) 0.683 0.646 0.783 0.659 0.620 0.693
Aslani et al., 2018 (mask1) 0.698 0.482 0.746 0.651 0.451 0.641
Aslani et al., 2018 (mask2) 0.694 0.497 0.784 0.664 0.442 0.695
Aslani et al., 2019 (mask1) 0.765 0.120 0.670 0.699 0.123 0.536
Aslani et al., 2019 (mask2) 0.765 0.202 0.700 0.713 0.190 0.572

Proposed (mask1) 0.711 0.398 0.667 0.658 0.377 0.479
Proposed (mask2) 0.713 0.455 0.720 0.676 0.392 0.534

Figure 10: Example of resulting segmentation masks from cross-validation experiment for patient 01, slice 89 from the ISBI training dataset for
cross-sectional and longitudinal models, and for three types of normalization. t denotes time-point index. Pixel colors correspond to true positives
(red), false negatives (yellow) and false positives (blue), using mask1 as reference. The proposed pipeline (rightmost column) produces the highest
DSC score.

The longitudinal normalization pre-processing method increased the robustness of a trained network
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Figure 11: Example of resulting segmentation masks from cross-validation experiment for patient 03, slice 109 from the ISBI training dataset for
cross-sectional and longitudinal models, and for three types of normalization. t denotes time-point index. Pixel colors correspond to true positives
(red), false negatives (yellow) and false positives (blue), using mask1 as reference. The white arrow points (for simplicity only in the last column)
to a lesion that disappears in time, and whose change can be properly detected by the longitudinal pipeline.

in respect to the histogram variations of the input
data, which were present in the ISBI 2015 training
data. Thus, it is a promising technique to be applied
also on MRI data from various sources, e.g. in the
context of multi-center trials. Future work of our
group will therefore include the validation of the
algorithm on heterogeneous data from clinical studies
and the evaluation of diagnostic relevance together with
clinical partners. Future improvements also include
the automatic selection of the reference images for the
normalization process or eventually the generation of a
synthetic template.
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